Inwardly Rectifying K+ (Kir) Channels inDrosophila
نویسندگان
چکیده
منابع مشابه
Distinct Specificities of Inwardly Rectifying K Channels
Activation of several inwardly rectifying K channels (Kir) requires the presence of phosphatidylinositol 4,5bisphosphate (PtdIns(4,5)P2). The constitutively active Kir2.1 (IRK1) channels interact with PtdIns(4,5)P2 strongly, whereas the G-protein activated Kir3.1/3.4 channels (GIRK1/GIRK4), show only weak interactions with PtdIns(4,5)P2. We investigated whether these inwardly rectifying K chann...
متن کاملInwardly rectifying K+ (Kir) channels in Drosophila. A crucial role of cellular milieu factors Kir channel function.
Three cDNAs encoding inwardly rectifying potassium (Kir) channels were isolated from Drosophila melanogaster. The protein sequences of Drosophila KirI (dKirI) and dKirII are moderately (<44%) and dKirIII sequence is weakly (<27%) identical to human Kir channel subunits. During fly development, five dKir channel transcripts derived from three genes are differentially expressed. Whole mount in si...
متن کاملG Protein Regulation of Inwardly Rectifying K(+) Channels.
Inwardly rectifying K(+) (Kir) channels respond to receptor-stimulated signaling cascades that involve G proteins and other cytosolic messengers. Channel activity is controlled both by direct coupling of G protein subunits and by phosphorylation via protein serine/threonine and tyrosine kinases. The coincidence of both forms of Kir channel signaling may give rise to complex cellular responses.
متن کاملInwardly rectifying K+ channels in dispersed bovine parathyroid cells.
Excitation-secretion coupling in various endocrine cells is dependent on membrane voltage which is controlled by ion channels. In order to characterize and determine the functional significance of voltage-gated ion channels in the parathyroid cell, the patch clamp technique was used in cell-attached and whole cell configurations to study single channel and whole cell currents in dispersed bovin...
متن کاملInwardly rectifying K(+) channels in esophageal smooth muscle.
The whole cell patch-clamp technique was used to investigate whether there were inwardly rectifying K(+) (K(ir)) channels in the longitudinal muscle of cat esophagus. Inward currents were observable on membrane hyperpolarization negative to the K(+) equilibrium potential (E(k)) in freshly isolated esophageal longitudinal muscle cells. The current-voltage relationship exhibited strong inward rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2002
ISSN: 0021-9258
DOI: 10.1074/jbc.m202385200